

BRS Thrombosis Is Multifactorial: Do Not Always Blame the Device

T. Santoso

University of Indonesia Medical School, Medistra Hospital, Jakarta, Indonesia

Platelet Deposition By Confocal Microscopy Of Immunofluroscent Staining (CD61/CD42b)

Thick vs. Thin Struts DES Healing & Endothelialization In SYNERGY, Biomatrix & ABSORB BVS

Virmani R. TCTAP 2014

Risk Factors of Scaffold Thrombosis

Device-related factors	Platelet – related factors	Angioplasty- related factors (correctable)	Lesion- related factors	Patient-related factors
 Strut thickness Delayed or incomplete endothelialization Chronic, late recoil Late intraluminal dismantling (predisposed by acute malappposition) Peristrut low intensity area Neoatherosclerosis Restenosis 	 High platelet reactivity / APT resistance Discontinuation of APT 	 Underexpansion (small MSA) Edge issues (dissection, residual disease) Geographic miss Acute fracture ↓ TIMI flow 	 Diffuse disease Bifurcation Small vessel Thrombus containing lesion CTO SVG Tandem lesions Stasis Multivessel CAD 	 Diabetes (insulin- dependent) Renal failure Low EF ACS Predisposing thrombogenic conditions Cigarette smoking Malignancy Genetic traits Surgery

ABSORB Studies: PSP Analysis

- Definition of PSP (must satisfy all the criteria below)
 - Pre-dilatation
 - Sizing (vessel): 2.25mm \leq QCA RVD \leq 3.5mm
 - Post-dilatation:
 - Pressure >16 atm
 - Balloon diameter: Scaffold diameter > 1:1
 - Balloon diameter ≤ Scaffold diameter + 0.5mm
- Comparing the clinical outcomes of PSP vs Non-PSP subgroups*

* Based on subjects treated with at least one Absorb BVS. For subjects with multiple target lesions, all lesions have to be treated per PSP

ABSORB 4 Cities Registry: Reduction In Absorb Scaffold Thrombosis With Improved Technique

*For a 2.5-3.0 mm & 3.5 mm scaffold respectively

Optimal Implantation Technique Is Imperative For Good Clinical Outcomes Significant Improvement In GHOST-EU Outcomes At 1 Yr With Optimal Implantation

Brugaletta, S., GHOST-EU PSP Analysis, TCT 2016.

ABSORB Studies

ABSORB (A) EXTEND, A II, A III, A-Japan, A-China: Performance Of Optimal PSP Techniques

	Lesions (n=3,149)	Patients (n=2.973)
Predilatation ¹	60.1 %	58.2%
Sizing ²	82.3%	81.6%
Post-dilatation ³	12.7%	12.4%
AII PSP	5.0%	4.9%

¹Performed in all lesions with a balloon to QCA-RVD ratio \geq 1:1; ²QCA-RVD > 2.25 mm-< 3.75 mm for all treated lesions; ³Performed with a non-compliant balloon at > 18 atm.& with a nominal diameter larger than the nominal scaffold diameter, but not > 0.5 m larger

Optimal Implantation Technique Is Imperative for Good Clinical Outcomes

Pooled Absorb Outcome With PSP Analysis*

This is even more critical if we are dealing with complex cases Different lesion subset may need different & specific technique

*PSP: Prepare, Sizing, Post-dilate

Event Rate %

Outcomes of BVS Implantation in <u>Real World Cohort</u> Utilizing Optimized Implantation Strategy

1. Aggressive lesion preparation (97.3%); (2). High pressure post-dilatation (99.8%); (3). IV imaging (85.8%)(IVUS 82.0%/OCT 14.0%)

N=264 pts, 400 lesions	1 year	2 years	
TLF	17 (7.9%)	22 (11.6%)	
Cardiac death	3 (1.3%)	4 (2.0%)	
Target vessel MI	4 (1.8%)	4 (1.8%)	
All cause death	14 (6.6%)	19 (10.4%)	
Any myocardial infarction	6 (2.8%)	7 (3.5%)	
TVR	17 (8.0%)	25 (13.8%)	
Definite/probable ST	3 (1.2%)	3 (1.2%)	

IRIS-BVS Registry (in Korea)

Design: multicenter, all comer, prospective, observational study (aim n=1000) **Objective**: to compare the ourcomes of BVS with other DES in <u>"real world practice"</u> **Primary end-points**: target vessel failure (TVF)

 Composite outcomes of (1) Cardiac death, (2) Myocardial infarction (Periprocedural MI = CK-MB > 10 x UNL; Spontaneous M = any cardiac enzyme elevation); (3) Target vessel repeat revascularization

PS matched	IRIS BVS N=352	IRIS EES N=352	P value	PS matched	IRIS BVS N=352	IRIS EES N=352
Device-Oriented Endpoint				Definite		
Target vessel failure	2 (0.06%)	16 (1.8%)	0.88		0 (0 00()	0 (0 0%)
Cardiac death	0 (0.0%)	3 (0.9%)	0.41	Acute (0-1 day)	0 (0.0%)	0 (0.0%)
Myocardial infarction	2 (0.06%)	11 (3.1%)	0.019	Subacute (2-30 days)	0 (0.0%)	0 (0.0%)
- Peri-procedural MI	2 (0.06%)	9 (2.6%)	0.033	Late (31-265 days)	0 (0.0%)	0 (0.0%)
- Spontaneous MI	0 (0.0%)	2 (0.06%)	0.30	Very late (> 365 days)	0 (0.0%)	0 (0.0%)
Target vessel revascularization	0 (0.0%)	3 (0.09%)	0.68	Definite or probable		
Patient oriented end poir	nt			Acute (0-1 day)	0 (0.0%)	0 (0.0%)
Death from any cause	0 (0.0%)	5 (1.5%)	0.35	Subscuto (2.20 days)	0 (0 0%)	0 (0 0%)
- Cardiac death	0 (0.0%)	3 (0.9%)	0.063		0 (0.0 /8)	0 (0.078)
- Non-cardiac death	0 (0.0%)	2 (0.06%)	0.64	Late (31-265 days)	0 (0.0%)	0 (0.0%)
Stroke	0 (0.0%)	1 (0.03%)	0.47	Very late (> 365 days)	0 (0.0%)	0 (0.0%)

Impact Of Implantation Technique In Simple & More Complex Lesions

Scaffold Restenosis

Scaffold Thrombosis

* N = 657

Possible Mechanical Causes Of Scaffold Thrombosis:

Insights From Case Reports With Intracoronary Imaging

Early ScT (n=17): Malapposition (24%), incomplete lesion coverage (18%) & underdeployment (12%)

Late/VLScT (n=26): Malapposition (33%), late discontinuity (31%), & peristrut low intensity area (19%)

Sotomi et al. EuroIntervention 2017; 12:1747-1756

Possible Mechanical Causes Of Scaffold Thrombosis:

Insights From Case Reports With Intracoronary Imaging

Main factors for BRS failure: MECHANICAL FACTORS !!!

Late/VLScT (n=26): Malapposition (33%), late discontinuity (31%), & peristrut low intensity area (19%)

Sotomi et al. EuroIntervention 2017; 12:1747-1756

Case 1: BRS Thrombosis

Mr. AW, 72 yrs old, male, silent ischemia (TMT), MSCT: 80% proximal LAD. Risk factor: dyslipidemia, \downarrow HDL, hypertension.

Baseline: calcific nodules (arrow)

Post BRS implantation: Expansion & eccentricity index of 80.5% & 0.47, respectively, strut fracture*, intra-scaffold dissection⁴ & malapposition[†]

Case 1: BRS Thrombosis

In day 3: acute anterior wall infarction caused by subacute BRS thrombosis, complicated with cardiogenic shock . Put on IABP & underwent successful PCI.

- Patient showed antiplatelet resistance both to clopidogrel & aspirin (576 ARU) & genotype analysis indicated a decreased CYP2C19 activity & a poor metabolizer phenotype.
- The patient received 2 DES & was further treated with ticagrelor & higher dose of aspirin
- Risk factors for BRS thrombosis: <u>suboptimal</u> <u>implantation & DAPT resistance</u>

Both the *doctor* & the *patient* are *MORE THROMBOGENIC* than the device

Case 2: BVS Thrombosis

CY. F, 62 yr old, stable angina, DM.

Subacute scaffold thrombosis (day 10)

At day 15, upon her own inititative, patient *discontinued her antiplatelet medications* for 5 days as she needed to undergo dental surgery. She developed STEMI caused by subacute BVS thrombosis. Treated with thrombectomy & IC/IV GP2b/2a inhibitor. *Risk factors for ScT: DM & premature DAPT discontinuation*

On OCT after thrombectomy, the BVS was concentric, well expanded & well opposed / no malapposition & there were no edge dissection, no fracture. Residual thrombus was present.

The *patient* is *MORE THROMBOGENIC* than the device

Case 3: Good Angio Result May Not Be Sufficient

E

09-

RS

A.Baseline. Green line = old DES. **Proximal LAD Ø > midLAD Ø**

A

B

B. After predilatation & <u>sizing</u>, BVS (3.5x38 mm) implantation

C. Good angiographic result after post-dilatation. But .. look at the OCT (next slide) A "Simple Case" With pLAD Stenosis. **PSP strategy was applied**

E. Final result

Overdilatation in pLAD led to BVS strut fracture & deep proximal edge dissection

After bail-out with DES (Xience): strut fracture & edge dissection already taken care of

6 Month Follow Up: No restenosis; No more dissection; & ... No Thrombosis Patient was doing fine at 2.5 yrs FU

The *doctor* can be *MORE THROMBOGENIC* than the device

E/F: *Nonappossed struts* surrounded by neointimal tissue above the endoluminal border

None Is Perfect And BRS May Also Fail: But ... We Still Have Gaps In Our Understanding

BRS thrombosis: Disruption Acute or acquired Restenosis **Evaginations** (most disastrous) Dismantling **Neoatherosclerosis** Hollows malapposition Can we identify **Cavities & peristurt** What is the To what extend can Is it preventable?. predictors?. Which contrast staining: be tolerated?. What incidence & effect of How to treat ? treatment strategy? are they innocent (arrow: incomplete is the fate of floating acute, persistent & bystander? or embolized struts? late acquired ISA? strut apposition

[ISA])

Onuma Y, TCTAP 2016 Tamburino C, et al. EuroIntervention. 2015;11:45-52

Conclusions

- **BRS thrombosis** is the most dreadful complication of BRS implantation.
- Though strut thickness is one culprit, BRS thombosis is multifactorial & all predisposing factors should also be taken into account
- Appropriate technique (PSP) is important, but use of imaging devices (IVUS, OCT, etc) may show that good angiographic result may not be necessarily acceptable
- Future of BRS, especially for its application in *complex lesions*, is very dependent on *next generation designs* and availability *long-term clinical data*

Conclusion

Do not throw the baby out with the bath water